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ABSTRACT

Statistical relations used for estimating the dissipation rate of turbulent kinetic energy (TKE) in isotropic turbulence from the inertial
subrange of Lagrangian temporal and spatial structure functions are extended here to the case of more realistic turbulence spectra that
include low-frequency and low-wavenumber ranges. It is shown that using the traditional relations based only on the inertial subrange sub-
stantially underestimates the dissipation. The improved relations are better constrained by experimental data from which the dissipation is
evaluated, enabling more accurate dissipation estimates. The concept is illustrated using laboratory data from water tank experiments of tur-
bulence generated by an oscillating cylinder, where the dissipation is evaluated in three independent ways: from Lagrangian spectra and from
Lagrangian temporal and spatial structure functions calculated from the motion of neutrally buoyant finite-sized particles. An additional cor-
rection to the relations for estimating the dissipation from the spatial structure functions is applied to take into account the filtering effect of
the particles due to their finite size. It is found that, for these particular experiments, the TKE dissipation rate scales well with dimensionally
consistent quantities built using the amplitude of the oscillation of the cylinder and the period of its motion, and the constant of proportion-
ality in this scaling relation is determined using the method proposed here. Although the turbulence under consideration is quite anisotropic,
the adopted theoretical framework, which assumes isotropic turbulence, seems to be applicable to the experimental data as long as the turbu-
lence statistics are averaged over the three main flow directions.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0148473

I. INTRODUCTION

The dissipation rate of turbulent kinetic energy (TKE) (hereafter
simply called dissipation) in turbulent flows is almost invariably esti-
mated from measurements using results from Kolmogorov’s theory,
which postulates that the inertial subrange of the turbulence spectra is
proportional to a power of the dissipation.1–3 Conceptually, this proce-
dure poses no problems when the dissipation is estimated directly
from the spectra, but the calculation of spectra from raw turbulence
data always involves a certain amount of processing, with the underly-
ing assumptions inevitably leading to some loss of accuracy. A more
straightforward way to estimate the dissipation, at least from a data
processing point of view, is by using the structure functions of the

turbulence,4,5 for which Kolmogorov’s results may be expressed equiv-
alently as a proportionality of the structure functions to a power of the
dissipation.6–8 de Jong et al.9 and Bertens et al.10 give detailed accounts
of how to estimate the dissipation from spectra and structure functions
obtained in laboratory experiments using particle image velocimetry
(PIV).

However, one aspect that is often overlooked is that Kolmogorov’s
theory only specifies the form of the turbulence spectrum in the inertial
subrange, whereas the structure functions receive contributions from
the whole spectrum.6 This necessarily makes the relations that are avail-
able to link the structure functions to the corresponding spectra inaccu-
rate to some degree. Being based on the assumption that only the
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spectrum in the inertial subrange matters in this calculation, existing
relations expressing the structure functions in terms of the dissipation
are best suited to very large Reynolds number flows, where the inertial
subrange extends over a wide range of scales. However, this approach
is subject to inaccuracies in real cases, where the inertial subrange may
be narrow or sampled at a resolution that is not fine enough. It is
known that the inertial subrange displayed by structure functions is
narrower than that displayed by the corresponding spectra (see Figs. 1
and 2 of Ref. 11). Unlike what happens for quantities where the vis-
cous cutoff of the spectra is of crucial importance, such as the direct
calculation of the dissipation or of the acceleration variance from their
definitions,12 in the evaluation of the dissipation from structure func-
tions, the low-wavenumber part of the spectrum plays a more impor-
tant role.

Hence, in the present study, the functional dependence of the
Lagrangian temporal structure function and of the spatial structure
functions on the dissipation in homogeneous and isotropic turbulence
will be re-derived for energy spectra that include not only an inertial
subrange but also a low-wavenumber or low-frequency range. These
relations will then be applied to observational data coming from labora-
tory experiments by M�eriaux et al.5 (hereafter denoted as M2020) of
turbulence generated in a water tank by an oscillating cylinder, moving
in a Lissajous figure with an amplitude of 7.5 cm. In these experiments,
turbulence statistics were diagnosed from the motion of neutrally buoy-
ant finite-sized particles immersed in the flow. Despite their relatively
large size (diameter D � 2 cm or D=g ¼ Oð100� 200Þ, where g is the
Kolmogorov microscale—see Table 2 of M2020), the particles were
small enough to capture sufficient information on the inertial subrange
of the turbulent motion. The reader is referred to M2020 for more
details. Finite-sized particles immersed in a fluid have been used by
numerous authors, either to study their clustering behavior,13,14 the
acceleration of the flow,15 or the rotation of the particles.16 In this work,
the particles are assumed to be purely passive and homogeneously dis-
tributed throughout the fluid, sampling the flow in an unbiased way.

The dissipation is evaluated here from the improved relations
using the Lagrangian frequency spectrum of the turbulence, the
Lagrangian temporal structure function, and the spatial structure func-
tions resulting from these experiments (the latter of which are evalu-
ated using a methodology developed by Monaghan and M�eriaux17).
The results show that the dissipation estimates are all consistent and
correct a perceived underestimation of the dissipation, confirming the
usefulness of the new relations.

This article is organized as follows. In Sec. II, an overview is pre-
sented of the derivation of the statistical relations between the struc-
ture functions and the dissipation, and new extended relations are
derived. In Sec. III, spectra and structure functions are computed from
laboratory data and fitted by their theoretical forms predicted by these
new relations, yielding values of the dissipation. The dissipation is also
shown to conform to a simple scaling based on the physical character-
istics of the experimental setup. Finally, Sec. IV summarizes the main
conclusions of this study.

II. METHODOLOGY
A. Established relations

An overview of the currently used approximations to relate tur-
bulence spectra and structure functions (and thence estimate the dissi-
pation) is necessary before the new, more refined approximations are

introduced. It will be assumed in the theoretical treatment that the tur-
bulence is statistically homogeneous, stationary, and isotropic.
Kolmogorov’s hypothesis about the inertial subrange can be expressed
for the wavenumber energy spectrum of the turbulence, E(k), as

EðkÞ ¼ ae2=3k�5=3; (1)

where a is a constant (known as Kolmogorov’s constant), e is the dissi-
pation, and k is the wavenumber. For the Lagrangian frequency spec-
trum, /ðxÞ, Kolmogorov’s hypothesis can be expressed as

/ðxÞ ¼ bex�2; (2)

where x is the (angular) frequency and b is a coefficient (sometimes
also known as Kolmogorov constant). Note, however, that b is actually
a function of the Reynolds number of the flow.12,18 The spectra pre-
sented above are defined such that

3
2
hu2i i ¼

3
2
q2 ¼

ðþ1
0

EðkÞ dk; (3)

hu2i i ¼ q2 ¼
ðþ1
0

/ðxÞ dx; (4)

where the brackets denote the ensemble averaging, ui is a turbulent
velocity component, and i¼ 1, 2, 3 correspond to the three spatial
directions in a Cartesian coordinate system. q denotes the root mean
square (RMS) turbulent velocity.

Relationships analogous to Eqs. (1) and (2) may be derived for
both the spatial and the Lagrangian temporal structure functions. It
seems fair to assume that the most fundamental relations are naturally
formulated in spectral space, since arguments about the turbulence
cascade are spectral by nature. The second-order Lagrangian temporal
structure function is defined, in terms of the corresponding
Lagrangian frequency spectrum, /ðxÞ, as

DTðsÞ ¼ h uiðtþ sÞ � uiðtÞ½ �2i ¼ 2
Ðþ1
0 /ðxÞ 1� cos ðxsÞ½ �dx; (5)

where t is an arbitrary time and s is the time lag on which DT depends.
The second equality is equivalent to Eq. (13.31) of Monin and
Yaglom.6 For stationary turbulence, DT does not depend on t but only
on s. Using Eqs. (2) and (5), it can be shown that

DTðsÞ ¼ C0es; (6)

and the coefficient C0 satisfies C0 ¼ pb. Equation (6) is equivalent to
Eq. (21.30’) of Monin and Yaglom.6 It should be noted that Eq. (6) is
only valid for timescales within the inertial subrange of the Lagrangian
frequency spectrum, for which Eq. (2) holds.

The relations expressing the spatial structure functions in terms
of the wavenumber spectrum (to be presented next) are somewhat
more involved. If the turbulence is assumed to be isotropic, any two
perpendicular directions can be chosen for the velocity components
and spatial lag l defining the longitudinal and transverse spatial struc-
ture functions. We choose these directions as x and y, respectively.

The longitudinal and transverse second-order spatial structure
functions, CL and CN, can then be defined as

CLðlÞ ¼ h u1ðx þ l; y; zÞ � u1ðx; y; zÞ½ �2i

¼ 2
ð ð ðþ1

�1
U11ðkÞ 1� cos ðk1lÞ½ �dk1dk2dk3; (7)
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CNðlÞ ¼ h u1ðx; y þ l; zÞ � u1ðx; y; zÞ½ �2i

¼ 2
ð ð ðþ1

�1
U11ðkÞ 1� cos ðk2lÞ½ �dk1dk2dk3; (8)

where l is the space lag, Uij (with i; j ¼ 1; 2; 3) is the
three-dimensional wavenumber spectrum of the turbulence, and
k ¼ ðk1; k2; k3Þ is the wavenumber vector, which is related to k

via k ¼ ðk21 þ k22 þ k23Þ
1=2. Equations (7) and (8) are particular cases

of Eq. (13.44) of Monin and Yaglom.6 Since the turbulence is homoge-
neous, CL and CN do not depend on x ¼ ðx; y; zÞ but only on l.

In order to make progress in this calculation, it is necessary to
introduce spherical polar coordinates for the wavenumber in the inte-
grals of Eqs. (7) and (8), namely, k1 ¼ k sin h cosu; k2 ¼ k sin h sinu
and k3 ¼ k cos h, where h and / are angles. Then, using also the fact
that in isotropic turbulence we have19

UijðkÞ ¼ dij �
kikj
k2

� �
EðkÞ
4pk2

(9)

(where dij is the Kronecker delta), those equations become

CLðlÞ ¼
1
2p

ð2p
0

ðp

0

ðþ1
0

EðkÞ sin h sin2h sin2uþ cos2h
� �

� 1� cos ðkl sin h cosuÞ½ � dk dh du; (10)

CNðlÞ ¼
1
2p

ð2p
0

ðp

0

ðþ1
0

EðkÞ sin h sin2h sin2uþ cos2h
� �

� 1� cos ðkl sin h sinuÞ½ � dk dh du: (11)

If Eq. (1) is inserted into Eqs. (10) and (11), the change of variable
q ¼ kl enables the dependences of CL and CN on l to be moved outside
the integrals. Then, the integrals can be simplified by reverting to
Cartesian coordinates (but now with q taken as the radial coordinate)
and adopting cylindrical coordinates to perform the integration. This
enables an immediate integration along the azimuthal angle and an
analytical, although not so immediate, integration in the radial direc-
tion. The final result is

CLðlÞ ¼ Ck elð Þ2=3; CNðlÞ ¼
4
3
Ck elð Þ2=3; (12)

where

Ck ¼
36
55

a
ðþ1
0

1� cos x

x5=3
dx ¼ 54

55
a
ðþ1
0

sin x

x2=3
dx: (13)

Either integral in Eq. (13) needs to be evaluated numerically. The inte-
gral in the second equality of Eq. (13) can be evaluated to yield �1:34,
which multiplied by 54/55 and by a¼ 2 (a value justified below) gives
Ck � 2:63.

Equations (6) and (12) provide the classical results that we wish
to improve.

B. Derivation of the extended relations

The extension of the wavenumber energy spectrum [Eq. (1)] that
includes a low-wavenumber range is known as a Von K�arm�an spec-
trum20 and can be expressed as the model spectrum

EðkÞ ¼ ae2=3L5=3ðkLÞ4

C þ ðkLÞ2
� �17=6 ; (14)

where C is an adjustable dimensionless constant and L is the longitudi-
nal integral length scale of the turbulence, defined as

L ¼ p
2q2

ðþ1
0

k�1EðkÞdk: (15)

The constants a and C can be determined theoretically by requiring
that E(k), as given by Eq. (14), satisfy both Eqs. (3) and (15). This yields

C ¼ 27p
110

� �2 ðp=2

0
sin4h sec1=3h dh

 !�2
� 0:5578 (16)

(where the integral needs to be evaluated numerically) and

a ¼ 55
9p

C5=6 eL
q3

� ��2=3
: (17)

Since the Von K�arm�an spectrum [Eq. (14)] is valid at infinite
Reynolds number, eL=q3 in Eq. (17) should also be taken in the infi-
nite Reynolds number limit. It is known from DNS and experiments
that eL=q3 � 0:5 in that limit (see, e.g., Fig. 2 of Ref. 12, or Refs. 8 and
21). Choosing, for example, eL=q3 ¼ 0:46, Eq. (17) yields a¼ 2, as
was seen previously to be appropriate to assume for a Von K�arm�an
spectrum.12,19,20 This value will be adopted here.

The extension of the Lagrangian frequency spectrum [Eq. (2)] to
low frequencies is sometimes called a Lorenz spectrum11,12,22 and can
be expressed as the model spectrum

/ðxÞ ¼ be
x2

0 þ x2
; (18)

where x0 is an adjustable cofficient, which is related to the integral
timescale TL,

TL ¼
1
q2

ðþ1
0
huiðtÞuiðt þ sÞi ds ¼ p

2q2
/ðx ¼ 0Þ ¼ p

2q2
be
x2

0
: (19)

From Eqs. (4) and (18), it also follows that

hu2i i ¼ q2 ¼ p
2

be
x0
: (20)

Equations (19) and (20) imply, more simply, that x0 ¼ 1=TL, as noted
by Mordant et al.22

If the same procedure used to obtain the second-order
Lagrangian temporal structure function [Eq. (6)] is followed, but using
/ðxÞ defined according to Eq. (18) in Eq. (5), this yields

DTðsÞ ¼ C0es
1� e�x0s

x0s
¼ C0e

x0
1� e�x0sð Þ: (21)

Note that, unlike Eq. (6), in which DT grows linearly with s, DT as
given by Eq. (21) approaches a constant at large s, namely,

DTðs! þ1Þ ¼
C0e
x0

: (22)

Note also that in the limit x0s! 0, i.e., for time lags s contained in
the inertial subrange, which are relatively short compared with 1=x0,
Eq. (21) reduces to Eq. (6).

As for DT, the procedure used in Sec. IIA to derive the second-
order longitudinal and transverse spatial structure functions [Eq. (12)]
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can be extended by considering the wavenumber spectrum E(k) of Eq.
(14) in Eqs. (10) and (11) instead of Eq. (1). After substantial calculations,
where the changes of variables of integration follow much the same pro-
cedure as described previously, the following results are obtained:

CLðlÞ ¼
36
55

a elð Þ2=3 L
l

� �5=3 ðþ1
0

1� cos x

C þ L
l

� �2
x2

h i5=6 dx; (23)

CNðlÞ ¼
6
55

a elð Þ2=3 L
l

� �5=3 ðþ1
0

3C þ 8
L
l

� �2

x2

C þ L
l

� �2

x2

" #11=6 1� cos xð Þdx:

(24)

Unfortunately, CL and CN cannot be formulated now as compactly as
in Eq. (12) because their dependence on l extends into the integrals,
which cannot be evaluated analytically. However, it can be shown that
in the limit l=L! 0, Eqs. (23) and (24) reduce to Eq. (12), as they
should. This is the limit of relatively small scales, which are those con-
tained in the inertial subrange of the wavenumber spectrum.
Conversely, and although this is not as clear, both CL and CN approach
constants in the opposite limit, i.e., as l=L!1.

1. Correction for particle filtering

To make a comparison of the spatial structure functions with
data easier, it must be taken into account that the finite-sized particles
used to probe the turbulent flow are unable to resolve spatial scales
smaller than their own size. Following Teixeira and M�eriaux,12 this is
taken into account here by multiplying the structure functions given
by Eqs. (23) and (24) by the following factor:

l
pD

� �2

sin2
pD
l

� �
(25)

(valid for D=l � 1, and zero otherwise), where D is the particle diame-
ter. Equation (25) was obtained directly from Eq. (24) of Ref. 12
[equivalent to Eqs. (5.6) and (5.7) of Ref. 3, where this approach was
introduced], by replacing k ¼ 2p=l, noting that a spatial displacement
l corresponds to a wavenumber 2p=l. This approach takes into
account the fact that when particles are at a distance D from each
other, they are in contact; therefore CL or CN should both be zero: the
multiplicative correction of Eq. (25) approaches 1 when D=l ! 0 but
becomes 0 at D=l ¼ 1 (or higher), which makes sense physically.

Although this filtering certainly has an impact in the frequency/
temporal domain, that impact is more uncertain, as a translation of
spatial filtering into the temporal domain presupposes a “dispersion
relation” for the turbulence. While such a relationship between spatial
and temporal scales certainly exists in a fuzzy sense,3,23 it cannot be
quantified precisely, as in turbulence all scales interact with each other
and, for example, high wavenumbers k in E(k) may correspond to
both low and high frequencies x in /ðxÞ.
III. RESULTS
A. Testing of the new relations

Equations (18), (21), (23), and (24) will be used next to indepen-
dently estimate the dissipation from the data of laboratory experiments

described by M2020, in which Lagrangian spectra, temporal structure
functions, and spatial (originally, only longitudinal) structure functions
were evaluated from the motion of finite-sized neutrally buoyant par-
ticles. The turbulence produced by the oscillating cylinder in these
experiments was naturally anisotropic (unlike, for example, in Ref. 24);
nevertheless, the theoretical relations presented above will be applied to
the data by averaging the spectra and structure functions over the three
spatial directions. The hope is that the isotropic theory will still hold in
anisotropic conditions.

Figure 1 shows the compensated Lagrangian frequency spectra,
Lagrangian temporal structure functions, spatial longitudinal structure
functions, and spatial transverse structure functions calculated from
both experiments 4, 6, 7, 8, 10, and 11 of M2020 (see their Tables 1
and 2), and Eqs. (18), (21), (23), and (24). We note that all these com-
pensated quantities are such that the inertial subrange corresponds to
a horizontal line, whose height indicates the value of e.

The Lagrangian frequency spectrum is presented as x2/ðxÞ=b
as a function of x, assuming that C0 ¼ 5 or equivalently b ¼ 1:6.
Although b actually depends on the Reynolds number of the flow, as
pointed out by Teixeira and M�eriaux,12 the range of Reynolds num-
bers considered in the selected experiments of M2020 is limited
enough (Rek � 306� 418) that this value is reasonable (see, for exam-
ple, Fig. 3 of Ref. 12). There is another adjustable parameter in the
Lagrangian frequency spectrum: x0. It would in principle be possible
to estimate this parameter independently from the experimental data
by calculating the integral timescale TL using Eq. (19) or an equivalent
expression based on the temporal structure function, namely,

TL ¼
1
2q2

ðþ1
0

DTðs! þ1Þ � DTðsÞ½ �ds; (26)

which results from Eqs. (5) and (19). However, TL calculated in this
way converges poorly, perhaps because of insufficient sampling, or the
limited extent of the tank used in the experiments. Although tentative
estimates of TL using this method suggest that it takes values of the
same order as those that are going to be obtained next, it is more reli-
able to estimate x0 by trial and error from the values that optimize the
fit of the theoretical prediction [Eq. (18)] to the experimental data. In
order to avoid the weak constraint that this procedure, by itself, would
place on x0, it was decided to assume additionally that x0 scales
inversely with the period T of the oscillation of the cylinder. It was
found that the relation

x0 ¼
1
TL
¼ 5:462

T
(27)

best describes this dependence, so it will be adopted hereafter.
The temporal structure function is plotted in Fig. 1 as

DTðsÞ=ðC0sÞ as a function of s, which means that according to Eq.
(21) it also depends on x0 (assuming the same value of C0 as for the
Lagrangian frequency spectrum). For consistency, here, x0 is also cal-
culated according to Eq. (27).

Finally, the spatial longitudinal and transverse structure functions
are plotted in Fig. 1 as ½CLðlÞ=Ck�3=2=l and fCNðlÞ=½ð4=3ÞCk�g3=2=l,
respectively, as a function of l. For a¼ 2, as assumed previously, these
quantities depend, according to Eqs. (23) and (24), on the longitudinal
integral length scale of the turbulence L. As the integral timescale, the
longitudinal integral length scale could also, in principle, be calculated
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FIG. 1. Compensated Lagrangian frequency spectra x2/ðxÞ=b as a function of x for experiments 4, 6, 7, 8, 10, and 11 of M2020 in, respectively, (a), (e), (i), (m), (q), and
(u). Compensated second-order Lagrangian temporal structure function DT ðsÞ=ðC0sÞ as a function of s for experiments 4, 6, 7, 8, 10, and 11 of M2020 in, respectively, (b), (f),
(j), (n), (r), and (v). Compensated second-order longitudinal spatial structure function ½CLðlÞ=Ck �3=2=l as a function of l for experiments 4, 6, 7, 8, 10, and 11 of M2020 in,
respectively, (c), (g), (k), (o), (s), and (w). Compensated second-order transverse spatial structure function fCNðlÞ=½ð4=3ÞCk �g3=2=l as a function of l for experiments 4, 6, 7,
8, 10, and 11 of M2020 in, respectively, (d), (h), (l), (p), (t), and (x). Black lines denote experimental data averaged over the three spatial directions; solid red lines correspond
to the fits provided by Eqs. (18), (21), (23), and (24); dashed red lines correspond to Eqs. (23) and (24) multiplied by Eq. (25) (where the portion to the left of l ¼ D ¼ 2 cm
should be ignored).
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independently from the data using its definition, Eq. (15), or its equiv-
alent in terms of a spatial structure function. However, due to poor
convergence of the calculation, in this case resulting directly from the
limited extent of the tank, it is better to treat it as an adjustable param-
eter. The relevant basic parameter of the experiments that has dimen-
sions of length is the amplitude of the cylinder motion A ¼ 7:5 cm.
So, L should be proportional to this quantity. Since A does not change
throughout the experiments, here a constant value of the longitudinal
integral length scale will be assumed, which optimizes the agreement
with the data: L ¼ 4 cm, i.e., L ¼ 0:533A. Note that this value of the
longitudinal integral length scale is smaller than the values of M2020
in their Table 2 because the integral length scale in M2020 was simply
defined as L ¼ q3=e (cf. Ref. 25), whereas it can be shown that L, as
defined by Eq. (15), obeys instead L ¼ Ceq3=e, where Ce is a constant
lower than 1, as pointed out previously.12 Interestingly, the value of L
found in the present study is consistent with the length scale found for
the transition between the ballistic and diffusive dispersion regimes in
Figs. 11 and 13 of M2020.

Table I shows all the relevant parameters for the experiments
that were used to estimate the dissipation in Fig. 1, namely, the num-
ber of the experiment, the period of the cylinder motion T, the RMS
velocity q (as given in Table 2 of M2020), the assumed longitudinal
integral length scale L, x0 derived from T according to Eq. (27), and
the dissipation e estimated (by trial and error) from the optimal fit of
the red lines to the black lines in the graphs of Fig. 1. Using the values
of L and x0 given in Table I, the values for e obtained from the best
fits (red lines in Fig. 1) are found to be identical across the turbulence
statistics for each experiment, showing the consistency of the proposed
method.

The fits of the Lagrangian frequency spectra in Fig. 1 are fairly
good. Although the regions that separate the inertial subrange from
the low-frequency range appear to be well-captured, the measured
spectra depart from the fits both at low and at high frequencies. Note
that only the horizontal portion of the theoretical prediction would
exist if only the inertial subrange was taken into account, as is tradi-
tionally done. At high frequencies, the departure of the measured spec-
tra from the theoretical prediction is caused by the aliasing associated
with the finite dimensions of the particles used to probe the turbu-
lence. This is shown by the oscillations visible in the black lines at the
highest frequencies. These oscillations might be viewed as a manifesta-
tion of the spatial extent of the particles, related to a corresponding

temporal extent through the fuzzy “dispersion relation” that represents
the spatiotemporal structure of the turbulence.11 Curiously, the spec-
trum has more energy at high frequencies in experiment 8, and to a
lesser extent in experiment 11, for reasons that are not obvious. At low
frequencies, the spectra evaluated from measurements also have less
energy than their fits. This may be either an effect of the spatial con-
finement of the turbulence (which temporally translates into a deficit
of energy at low frequencies) or may be an effect of the way in which
the spectra are obtained from the raw data by Fourier transformation.
It is worth mentioning that the approach used to calculate the spectra
as proportional to the square of the Fourier transform of the original
temporal signal is strictly accurate for time series of infinite extent,
being subject to errors for finite time series.

The measured temporal structure functions in Fig. 1 are quite
smooth, perhaps as a result of being less processed than the frequency
spectra. The theoretical fits to these functions are quite satisfactory to
the right of their maxima, but the experimental data fall below the the-
oretical fits to the left of these maxima, except for experiment 8, for
reasons that are not obvious. It can be noticed that the inertial sub-
range in the temporal structure functions is almost non-existent in
most cases. This is consistent with Figs. 1 and 2 of Ref. 11, which show
that a well-defined inertial subrange exists in the structure function
only at substantially higher Reynolds numbers than it does for the
spectrum. The overestimation of the experimental data by the fits to
the left of the maxima is obviously due to the aliasing introduced by
the finite dimensions of the particles used to probe the turbulence,
being a counterpart of the phenomenon observed for the spectra at
high frequencies. However, no disagreement is observed between
experimental data and the fits for high values of s, which is surprising,
given the disagreement of the spectra at low frequencies. This suggests
that perhaps the temporal structure function at high s is weakly sensi-
tive to the form of the spectrum at low frequencies. In any case, the
prediction that DTðsÞ approaches a constant at high s is clearly con-
firmed by the data. Note that using the traditional formula for
DTðsÞ; DTðsÞ=ðC0sÞ is predicted to be constant, corresponding to the
low s asymptote of the theoretical predictions (red lines). If this classi-
cal theoretical prediction (horizontal red line) was fitted to the brief
plateau exhibited by the experimental data and corresponding to the
maximum values ofDTðsÞ=ðC0sÞ (the inertial subrange), this fit would
be, on the one hand, rather uncertain since this plateau has a very lim-
ited extent. On the other hand, the value of e estimated from this fit
would underestimate the dissipation by up to a factor of 2 since it
would be substantially lower than the asymptote of the new theoretical
prediction at low s (red line). An underestimation of e relative to the
values contained in Table I is, indeed, seen in Table 2 of M2020, whose
estimates were based on the fit of a horizontal line to the short plateau
shown by DTðsÞ=ðC0sÞ in Fig. 1. It should also be stressed that the fit
of DTðsÞ for high values of s, which the present method is able to pro-
vide, is considerably more reliable than any fit at lower s, since it refers
to large timescales, presumably corresponding to large length scales,
which are well resolved by the probing particles. For all these reasons,
the improved formula for DTðsÞ, Eq. (21), is crucial to achieve consis-
tency between e obtained from the frequency spectrum and the tem-
poral structure function.

The measured spatial structure functions in Fig. 1 are somewhat
noisier than the temporal structure functions, which may be a conse-
quence of the smaller sample used to calculate them (see details in

TABLE I. Parameters of the experiments and theoretical fits shown in Fig. 1: the
period of the cylinder motion T, the RMS velocity q, the longitudinal integral length
scale L, x0, and the dissipation e. Values of T and q come from Tables 1 and 2 of
M2020, respectively. Note that q results from the average of the variances of the
three velocity components.

Experiment T ðsÞ q ðcm s�1Þ L ðcmÞ x0 ðrad s�1Þ e ðcm2 s�3Þ

4 2.5 7.0 4 2.185 45
6 3 5.7 4 1.821 25
7 2 8.6 4 2.731 85
8 1.75 10.3 4 3.121 145
10 3 5.2 4 1.821 22
11 1.75 9.6 4 3.121 125
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M2020). The experimental data (black lines) are now compared
directly with the theoretical predictions of Eqs. (23) and (24) (solid red
lines) and with the same theoretical predictions corrected for the finite
size of the probing particles (dashed red lines). The traditional rela-
tions for the compensated spatial structure functions would corre-
spond to constants (horizontal lines) that, if fitted to the experimental
data (plateaus in the black lines), would again produce considerably
lower estimates of e than the ones obtained using the improved rela-
tions. At low values of l, the theoretical predictions (solid red lines)
depart from the measured structure functions due to the finite size of
the probing particles. This is partly captured by the theoretical predic-
tions corrected for particle size filtering (dashed lines); however, there
are some discrepancies. For example, the extension of non-zero values
of the structure functions to l < 2 cm, i.e., to separations smaller than
the diameter of the particles D ¼ 2 cm in Fig. 1, might be caused by
measurement errors. At high values of l, the structure functions calcu-
lated from measurements are limited by the dimensions of the domain
where the experiments were performed, which are 30 cm in all direc-
tions. This causes not only a sudden cutoff of the experimental data
(see the right end of the black lines) but also their decay at high l at a
rate faster than predicted theoretically (red lines). Whereas the exact
limits of the frequency spectrum and temporal structure function are
rather fuzzy because the turbulence does not satisfy a “dispersion
relation,” the limits of the domain of the spatial structure function are
rigidly defined by the size of the probing particles and of the tank. The
spike near the upper limit of l in experiment 7 is not easy to interpret,
but overall the corrected theoretical predictions (dashed red lines)
seem to be in reasonable agreement with the experimental data (black
lines), corroborating the values of e estimated from the frequency spec-
tra and temporal structure functions.

All these results illustrate the advantages of the improved rela-
tions of the temporal and spatial structure functions for estimating e
reliably. In Sec. III B, it will be analyzed to what extent the basic
parameters of the experiments can be used to scale the RMS velocity
and dissipation in this turbulent flow.

B. Scaling of the turbulence characteristics

Apart from the size of the tank in which the experiments of
M2020 were performed, the obvious length and time scales that the
experimental setup contains are the amplitude of the motion of the
cylinder that generates the turbulence A and the period of its oscilla-
tions T. We would expect the characteristics of the turbulence to be
scaled by these quantities. This idea is tested next.

Figure 2 shows comparisons between various scalings using A
and T, for the RMS velocity q and for the dissipation e, compared with
the measurements of q made by M2020 and with the values of e esti-
mated using the method developed in the present study. Figure 2(a)
shows that the RMS velocity scales fairly well with A/T, approximately
following the relation:

q ¼ 1:15
2A
T
¼ 0:79

L
TL
: (28)

There is a slight departure from this scaling between experiments 6 and
10 and between experiments 8 and 11, for which the scaling would pre-
dict the same RMS velocity (given that both A and T are equal for these
pairs of experiments), but q is larger for experiments 6 and 8. This is

FIG. 2. (a) RMS velocity scaled using A and T vs the RMS velocity measured by
M2020 (given in Table I); (b) dissipation scaled using A and T vs the dissipation
estimated from the procedure developed in the present study; (c) dissipation scaled
using the RMS velocity and A vs the dissipation estimated from the procedure
developed in the present study. Symbols correspond to different experiments, and
the dashed lines correspond to the predictions of Eqs. (28)–(30).
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because the RMS velocity depends (albeit weakly) on the direction of
the initial motion of the cylinder, with q being slightly lower when the
initial motion is upward, an aspect noted by M2020. In M2020, TL
ranges, among the experiments selected in the present study, from 0.6 s
in experiment 8 to 1.4 s in experiment 10, roughly following a propor-
tionality to T, as hypothesized here [Eq. (27)]. Our values of TL range
instead from 0.32 s in experiments 8 and 11 to 0.55 s in experiments 6
and 10. This means that the present values are smaller by a factor of
0.4–0.5. Such a difference can be explained by the way TL was simply
estimated in M2020 from the point where the velocity correlation func-
tion changes sign instead of calculating the integral in the first equality
of Eq. (19). The velocity correlation function in Fig. 10(b) of M2020
decreases approximately exponentially but crossing zero (cf. Fig. 1 of
Ref. 22). If this variation is approximated as linear, it can be shown that
the integral of such a correlation function is smaller than the value of
the time lag when the function reaches zero, by a factor 0.5. The con-
cave upward curvature of the measured correlation function means
that this value is probably a slight overestimate. Now, the second equal-
ity of Eq. (28) shows that q can also be expressed in terms of L and TL
[using L ¼ 0:533A and Eq. (27)], which is equivalent to
TL ¼ 0:79L=q. In M2020, TL was found to be TL ¼ 0:6L=q. The con-
stants of proportionality in Eq. (28) and M2020 are therefore roughly
similar and consistent with the fact that both our L and TL are roughly
half the values estimated by M2020.

Figure 2(b) presents a scaling for the dissipation based on A and
T compared with the values of e estimated before in Table I. This scal-
ing is expressed by the relation

e ¼ 3:15
ð2AÞ2

T3
¼ 0:27

L2

T3
L
; (29)

which can also be expressed in terms of L and TL by the second equal-
ity. The dissipation obeys this scaling fairly well, except for its two
highest values, corresponding to experiments 8 and 11, where the scal-
ing does not predict any difference in e, but the values estimated from
the spectra and structure functions are different. This is a consequence
of the same phenomenon mentioned above for the RMS velocity,
amplified, for the highest value of e, by the fact that T appears in the
scaling expression of Eq. (29) raised to a power of 3, instead of 1.

Finally, Fig. 2(c) shows a scaling relation where the measured q is
included, in combination with A, in the form

e ¼ 2:05
q3

2A
¼ 0:546

q3

L
(30)

(with the second equality using again the relation L ¼ 0:533A), and
this is compared with the e estimated from the spectra and structure
functions. As may be seen, this scaling is even more accurate than the
one in Fig. 2(b), corroborating the idea that not accounting for the
effects of the direction of the initial motion of the cylinder is what
causes the slight disagreement with the scaling of Eq. (29), manifested
through its dependence on T. The accuracy of Eq. (30), still keeping A
as a (constant) scaling parameter, is very good, as clearly shown by
Fig. 2(c). It is worth noting that if the definitions of q provided by Eq.
(28) are inserted into Eq. (30), the scaling constants that appear in
equations formally similar to Eq. (29) are 3.12 and 0.27, respectively,
which are quite close to 3.15 and 0.27. This indicates that L and TL
have been correctly related to the physical properties of the

experimental setup. It is also interesting that the constant included in
the second equality of Eq. (30) (0.546) is slightly larger, but relatively
close, to the value of eL=q3 previously assumed in Eq. (17) at infinite
Reynolds number (0.46). The discrepancy goes in the right direction,
and the value is of the correct order of magnitude for a flow at the
Reynolds numbers used in the experiments (see Fig. 2 of Ref. 12).

These results show that the characteristics of the turbulence gen-
erated in the experiments of M2020 can be scaled with the key param-
eters of the experimental setup, which is not surprising. However, it
would have been impossible to determine the exact form of these rela-
tionships, namely, the corresponding proportionality constants, with-
out fitting a theoretical model to the measurements. In the case of e,
this is much facilitated by the new statistical relations proposed in the
present study.

IV. CONCLUSIONS

Statistical relations that have been traditionally used to estimate
the dissipation rate of TKE from the spectra and structure functions in
a turbulent flow have a validity that is limited to scales within the iner-
tial subrange. In this study, new relations were derived for the tempo-
ral and spatial structure functions in isotropic turbulence, which result
from formal definitions of these quantities where the energy spectra of
the turbulence also include a low-wavenumber or low-frequency
range. This was done by assuming a Von K�arm�an wavenumber spec-
trum and a Lorenz Lagrangian frequency spectrum. The resulting
improved definitions of the structure functions are better suited to
obtaining consistent and reliable estimates of the dissipation from
these different flow statistics, particularly when they are evaluated
from the motion of finite-sized neutrally buoyant particles.

Data from the laboratory experiments of M2020 were used to test
the new relations. It was seen that, despite the need to adjust additional
parameters, namely, x0 and L, these relations allowed the values of e
to be better constrained by the spectra and structure functions calcu-
lated from the experimental data than the classical relations. As the
inertial subrange diagnosed from the particle motion is somewhat nar-
row, partly because the Reynolds number of the flow is not very high,
but primarily because of the aliasing of small scales inherent to the
finite size of the particles, spectra that have a low-wavenumber or low-
frequency range add precious information to the structure functions.
This is particularly clear in the case of the Lagrangian temporal struc-
ture function, where the existence of the high-s asymptotic behavior
(corresponding to the low-frequency range of the Lagrangian spectra)
is confirmed by the data and greatly facilitates fitting the theory to the
data in Fig. 1.

Good fits of the frequency spectra, temporal structure functions,
and spatial structure functions predicted theoretically to the data were
seen to correspond to consistent values of the dissipation from all these
statistics for each experiment of M2020. The estimated values of e are
somewhat larger (by factors between 1.3 and 1.9) than those originally
determined by M2020, suggesting an underestimation of the latter, as
expected for situations in which the inertial subrange is narrow.
Although the theoretical framework that was used and improved here
is, in principle, only valid for isotropic turbulence, it was seen to be
applicable to the considerably anisotropic turbulence generated in the
laboratory experiments of M2020 if the turbulence statistics are aver-
aged over the three spatial directions.
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It was also shown that the characteristics of the turbulence (RMS
velocity and dissipation) scale on the physical characteristics of the
experimental setup associated with the stirring, namely, the amplitude
of the oscillating motion of the cylinder and the period of this oscilla-
tion. Knowing these scalings is, however, insufficient to evaluate q and
e, as the proportionality constants included in the scaling relations can
only be obtained after estimating those quantities independently, by
fitting the measurements to a model, as is done here. As these scalings
are expressed in terms of quantities specific to the experimental setup
adopted by M2020, their generality is probably limited. The equivalent
scalings expressed in terms of the integral length and time scales, how-
ever, are likely to be more general.

All of the dissipation estimates in this paper have relied on an
evaluation (and modeling) of second-order flow statistics. It would
also be interesting to estimate the dissipation from the third-order spa-
tial structure function, for which an exact theoretical result exists in
the inertial subrange (Kolmogorov’s 4/5 law) [see Eq. (6) of Ref. 8].
Although this is beyond the scope of the present study, it is an interest-
ing idea for future work.
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